

K NEAREST NEIGHBORS

Projects: 1) Identifying Wine Color and 2) Optical Character Recognition

BEFORE WE BEGIN LET US DO A THOUGHT EXPERIMENT

I want to find somebody to spend a Saturday afternoon with and I am looking for somebody most similar to me (nearest neighbor) in terms of:

- Sex (coded as 0 for female, and 1 for male)
- Age (coded in years)
- Outdoor sports interest (coded from 0 (no interest) to 10 (enthusiast))»

(all categories matter the same to me)

LET US DO THE CALCULATION FOR A SIMILARITY SCORE (AVERAGE ABSOLUTE DIFFERENCES)

Sake of argument: I am male (**1**), **50** years, outdoor sports score **7**:

- first candidate a student
 -
- second candidate an athletic outdoor (score=**9**) women (**0**)
51 years old
- third candidate an athletic outdoor (score=**9**), man (**1**)
53 years

LET US DO THE CALCULATION FOR A SIMILARITY SCORE

(AVERAGE ABSOLUTE DIFFERENCES – NORMALIZED TO 0 – 10)

Sake of argument: I am male (**1**), **50** years, outdoor sports score **7**:

- first candidate a student
- .
- second candidate an athletic outdoor (score=**9**) women (**0**)
51 years old
- third candidate is an athletic outdoor (score=**9**) man (**1**)
53 years»

OVERVIEW

In this session you will learn:

1. What is the underlying **idea of k-Nearest Neighbors**
2. How similarity can be measured with **Euclidean distance**
3. Why **scaling predictor variables** is important for some machine learning models
4. Why the **tidymodels package** makes it easy to work with machine learning models
5. How you can define a **recipe** to pre-process data with the **tidymodels** package
6. How you can define a **model-design** with the **tidymodels** package
7. How you can create a machine learning **workflow** with the **tidymodels** package
8. How **metrics** derived from a **confusion matrix** can be used to asses prediction quality
9. Why you have to be careful when interpreting *accuracy*, when you work with **unbalanced observations**
0. How a machine learning model can **process images** and how OCR (Optical Character Recognition) works»

ABOUT THE WINE DATASET

We will work with a publicly available wine dataset¹ containing 3,198 observations about different wines and their chemical properties.

Our goal is to develop a k-Nearest Neighbors model that can predict if a wine is red or white based on the wine's chemical properties.»

1. Cortez, Paulo, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. 2009. "Modeling Wine Preferences by Data Mining from Physicochemical Properties." *Decision Support Systems* 47 (4): 547–53. <https://doi.org/10.1016/j.dss.2009.05.016> <https://econ.langeanalytics.com/aibook/>

RAW OBSERVATIONS FROM WINE DATASET

```
1 library(rio)
2 DataWine<-import("https://lange-analytics.com/AIBook/Data/WineData.rds")
3 print(DataWine)

# A tibble: 3,198 × 13
  wineC...¹ acidity volat...² citri...³ resid...⁴ Chlor...⁵ freeS...⁶ total...⁷ Density      pH
  <chr>      <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>
1 red        10.8     0.32     0.44     1.6     0.063     16      37     0.998   3.22
2 white      6.4      0.31     0.39     7.5     0.04      57     213     0.995   3.32
3 white      9.4      0.28     0.3      1.6     0.045     36     139     0.995   3.11
4 white      8.2      0.22     0.36     6.8     0.034     12      90     0.994   3.01
5 white      6.4      0.29     0.44     3.6     0.197     75     183     0.994   3.01
6 red        6.7      0.855    0.02     1.9     0.064     29      38     0.995   3.3
7 red        11.8     0.38     0.55     2.1     0.071      5      19     0.999   3.11
8 white      6.7      0.25     0.23     7.2     0.038     61     220     0.995   3.14
9 red        7.5      0.38     0.57     2.3     0.106      5      12     0.996   3.36
10 red       7.1      0.27     0.6      2.1     0.074     17      25     0.998  3.38
# ... with 3,188 more rows, 3 more variables: sulphates <dbl>, alcohol <dbl>,
#   quality <dbl>, and abbreviated variable names `¹wineColor, `²volatileAcidity,
#   `³citricAcid, `⁴residualSugar, `⁵Chlorides, `⁶freeSulfurDioxide,
#   `⁷totalSulfurDioxide
```

»

OBSERVATIONS FROM WINE DATASET FOR SELECTED VARIABLES

SULFOR DIOXIDE AND ACIDITY

Note we use `clean_names("upper_camel")` from the `janitor` package to change all column (variable) names to UpperCamel.

```
1 library(tidyverse); library(rio);library(janitor)
2 DataWine<-import("https://lange-analytics.com/AIBook/Data/WineData.rds") %>%
3   clean_names("upper_camel") %>%
4   select(WineColor,Sulfur=TotalSulfurDioxide,Acidity) %>%
5   mutate(WineColor=as.factor(WineColor))
6 print(DataWine)
```

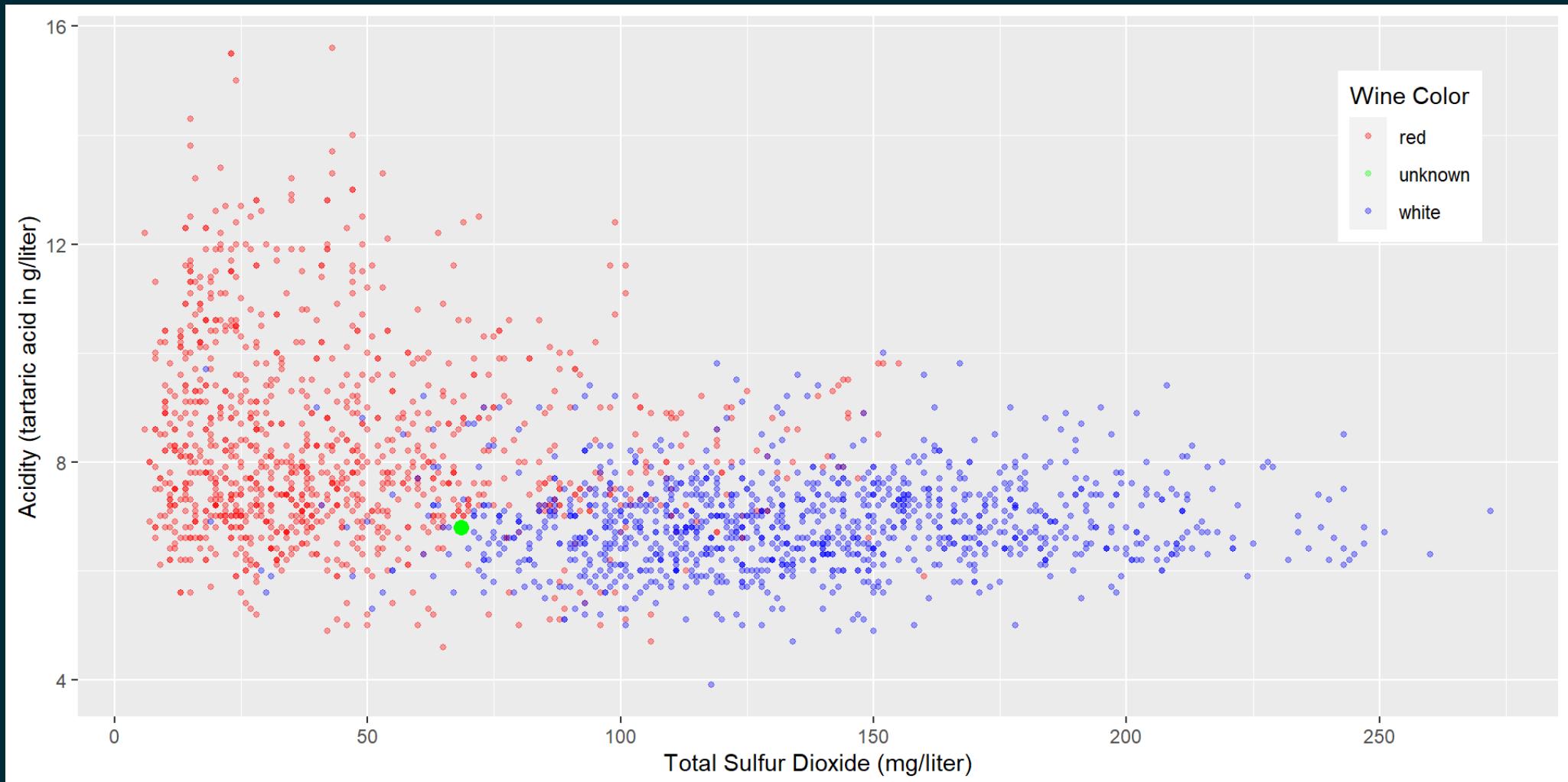
```
# A tibble: 3,198 × 3
  WineColor Sulfur Acidity
  <fct>     <dbl>   <dbl>
1 red         37     10.8
2 white       213     6.4
3 white       139     9.4
4 white       90      8.2
5 white       183     6.4
6 red         38      6.7
7 red         19      11.8
8 white       220     6.7
9 red         12      7.5
```


BEFORE STARTING WITH K NEAREST NEIGHBORS

LET US FIND SOME EYEBALLING TECHNIQUES THAT ARE RELATED TO VARIOUS MACHINE LEARNING MODELS»

EYE BALLING TECHNIQUES TO IDENTIFY RED AND WHITE WINES

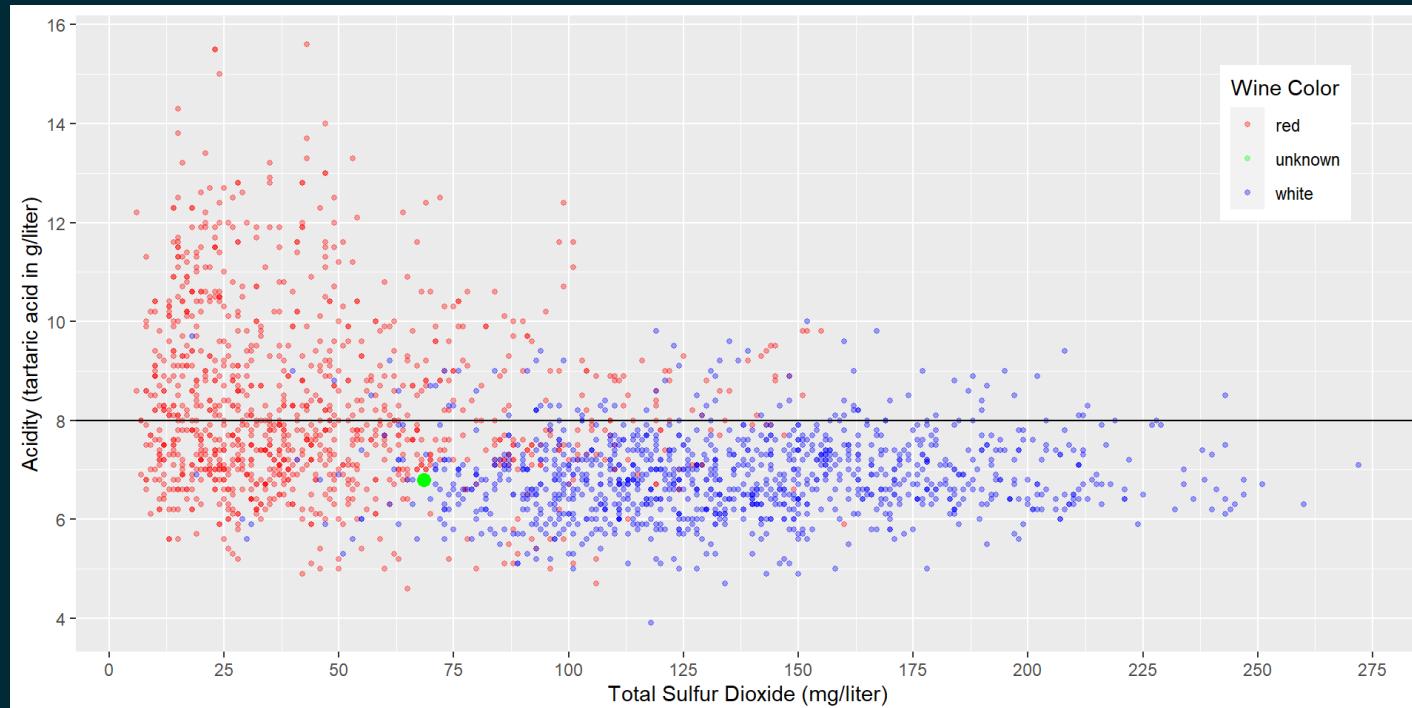
TRY EYEBALLING THE DATA



Acidity and Total Sulfur Dioxide Related to Wine Color

EYE BALLING TECHNIQUES TO IDENTIFY RED AND WHITE WINES

HORIZONTAL BOUNDARY



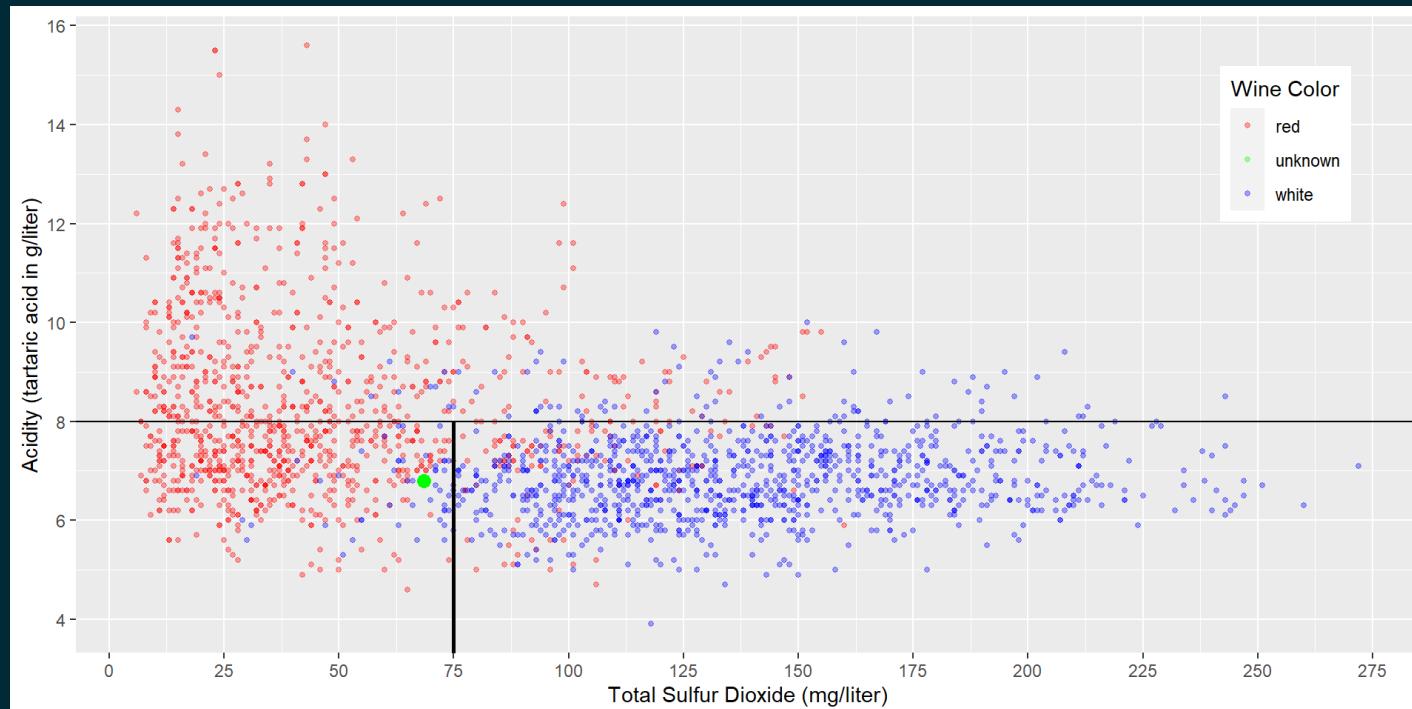
Horizontal Decision Boundary for Acidity and Total Sulfur Dioxide Related to Wine Color

CONFUSION MATRIX

		Truth	
		Red Wine	White Wine
Prediction	Red Wine	TP: 'half'	FP: 'few'
	White Wine	FN: 'half'	TN: 'most'

EYEBALLING TECHNIQUES TO IDENTIFY RED AND WHITE WINES

CREATING SUBSPACES LIKE SIMILAR TO A DECISION TREE



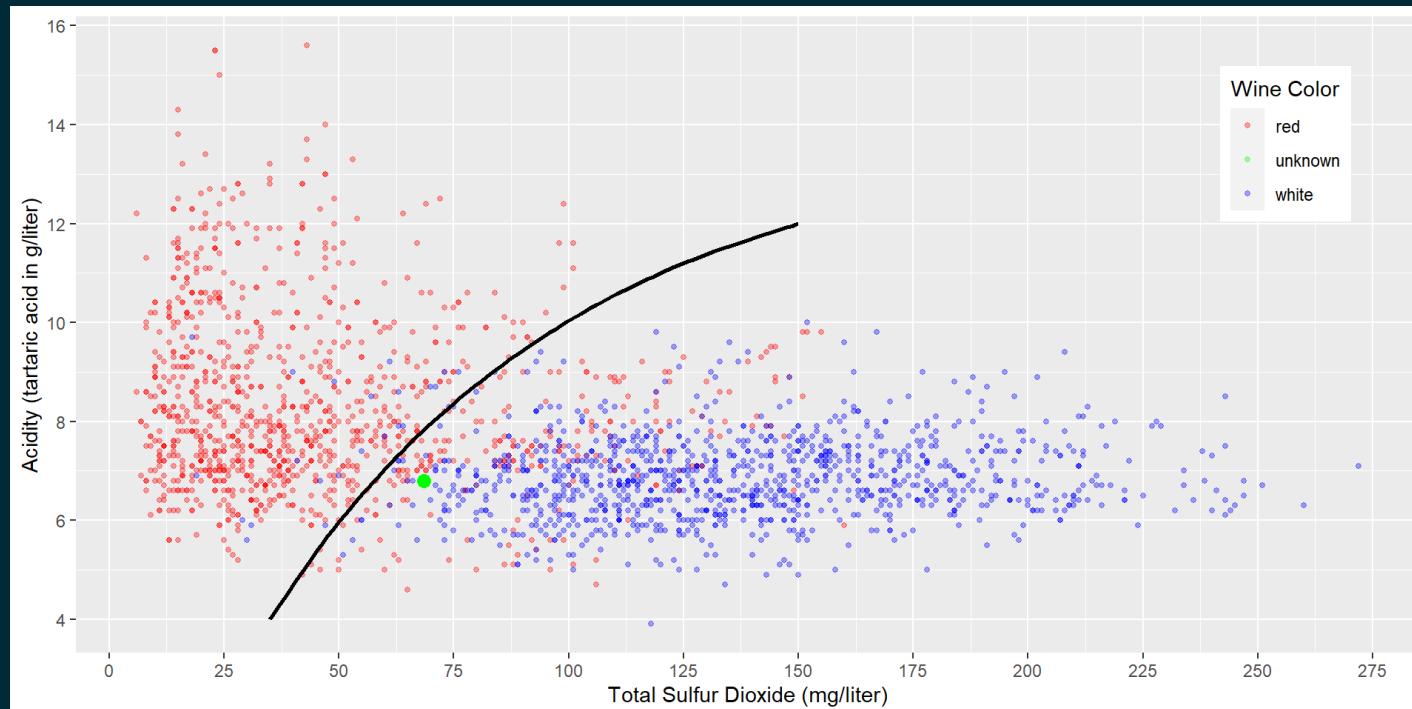
Sub-Space Boundaries for Acidity and Total Sulfur Dioxide Related to Wine Color

CONFUSION MATRIX

		Truth	
		Red Wine	White Wine
Prediction	Red Wine	TP: 'most'	FP: 'few'
	White Wine	FN: 'few'	TN: 'most'

EYEBALLING TECHNIQUES TO IDENTIFY RED AND WHITE WINES

USING A NON-LINEAR DECISION BOUNDARY LIKE A NEURAL NETWORK



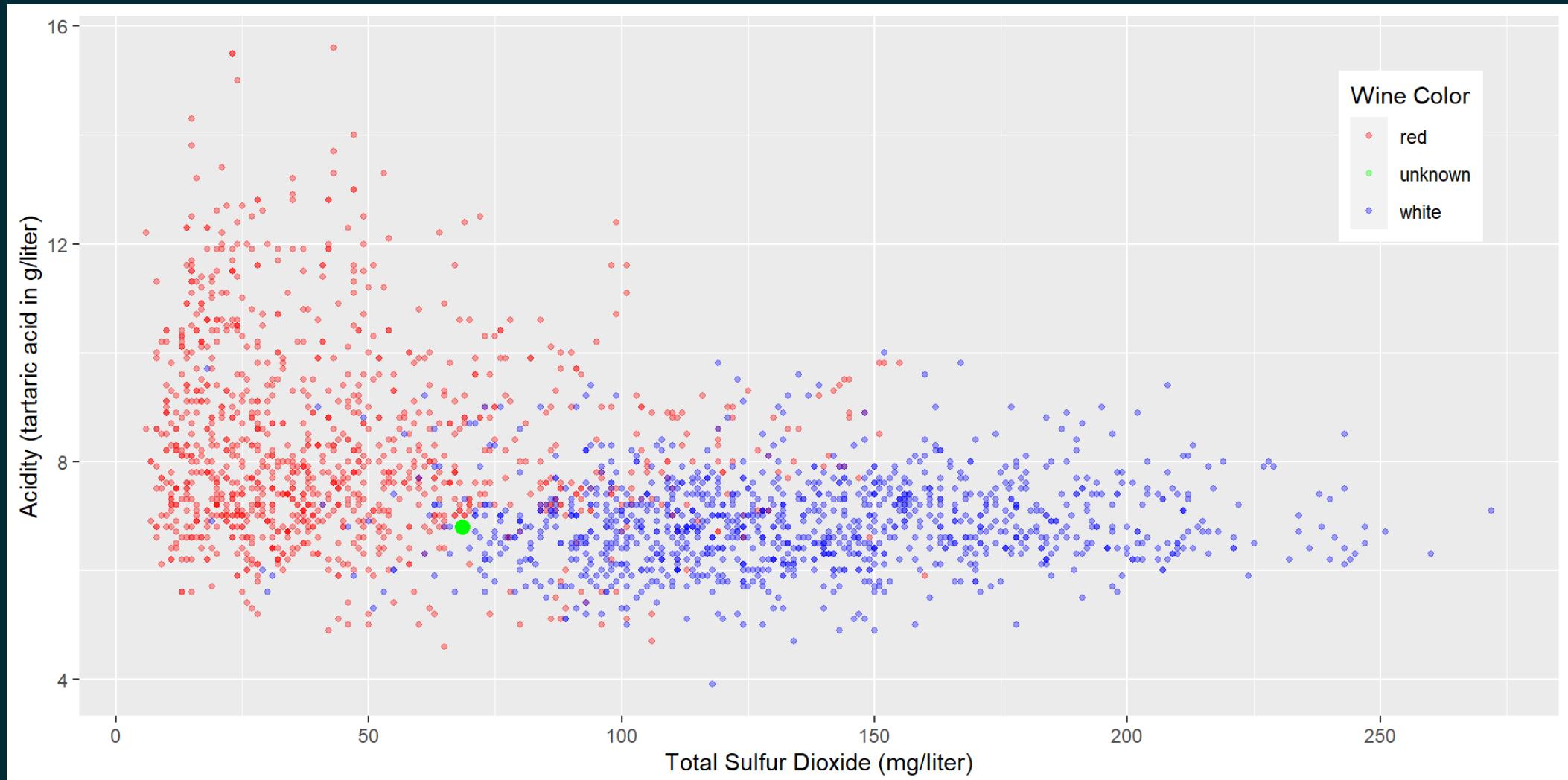
Curved Decision Boundary for Acidity and Total Sulfur Dioxide Related to Wine Color

CONFUSION MATRIX

		Truth	
		Red Wine	White Wine
Prediction	Red Wine	TP: 'most'	FP: 'few'
	White Wine	FN: 'few'	TN: 'most'

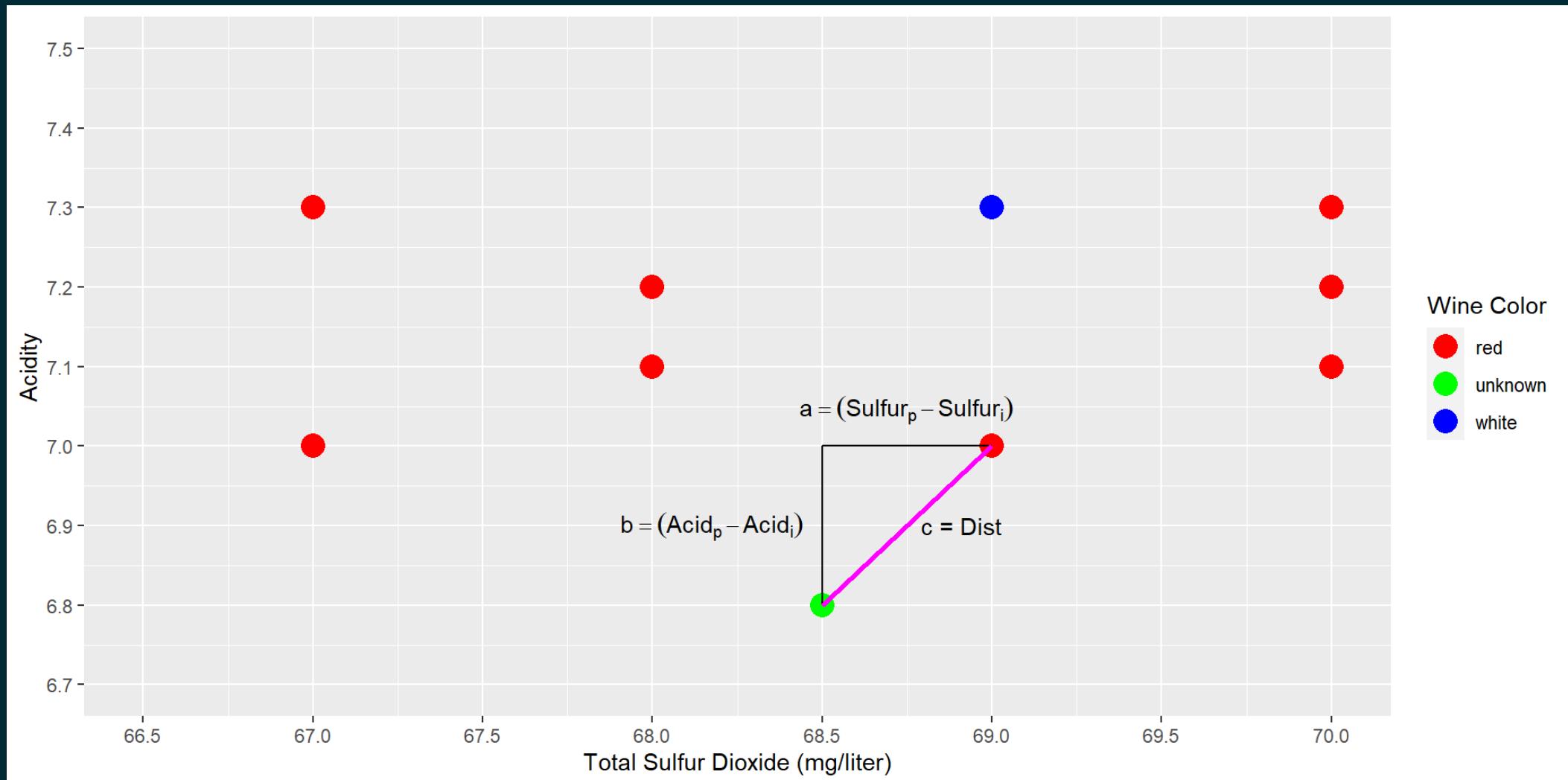
SO, HOW DOES K NEAREST NEIGHBORS WORK?

K NEAREST NEIGHBORS K=1



Acidity and Total Sulfur Dioxide Related to Wine Color»

K NEAREST NEIGHBORS K=1



Predicting Wine Color with k-Nearest Neighbors (k=1)

HOW TO CALCULATE EUCLIDEAN DISTANCE FOR TWO VARIABLES

Assume our observations have **two predictor variables** x and y . We compare the unknown point p to one of the points from the training data (e.g., point i):

$$Dist_i = \sqrt{(x_p - x_i)^2 + (y_p - y_i)^2}$$

»

HOW TO CALCULATE EUCLIDEAN DISTANCE FOR THREE VARIABLES

Assume our observations have **three predictor variables** x , y , and z . We compare the unknown point p to one of the points from the training data (e.g., point i):

$$Dist_i = \sqrt{(x_p - x_i)^2 + (y_p - y_i)^2 + (z_p - z_i)^2}$$

»

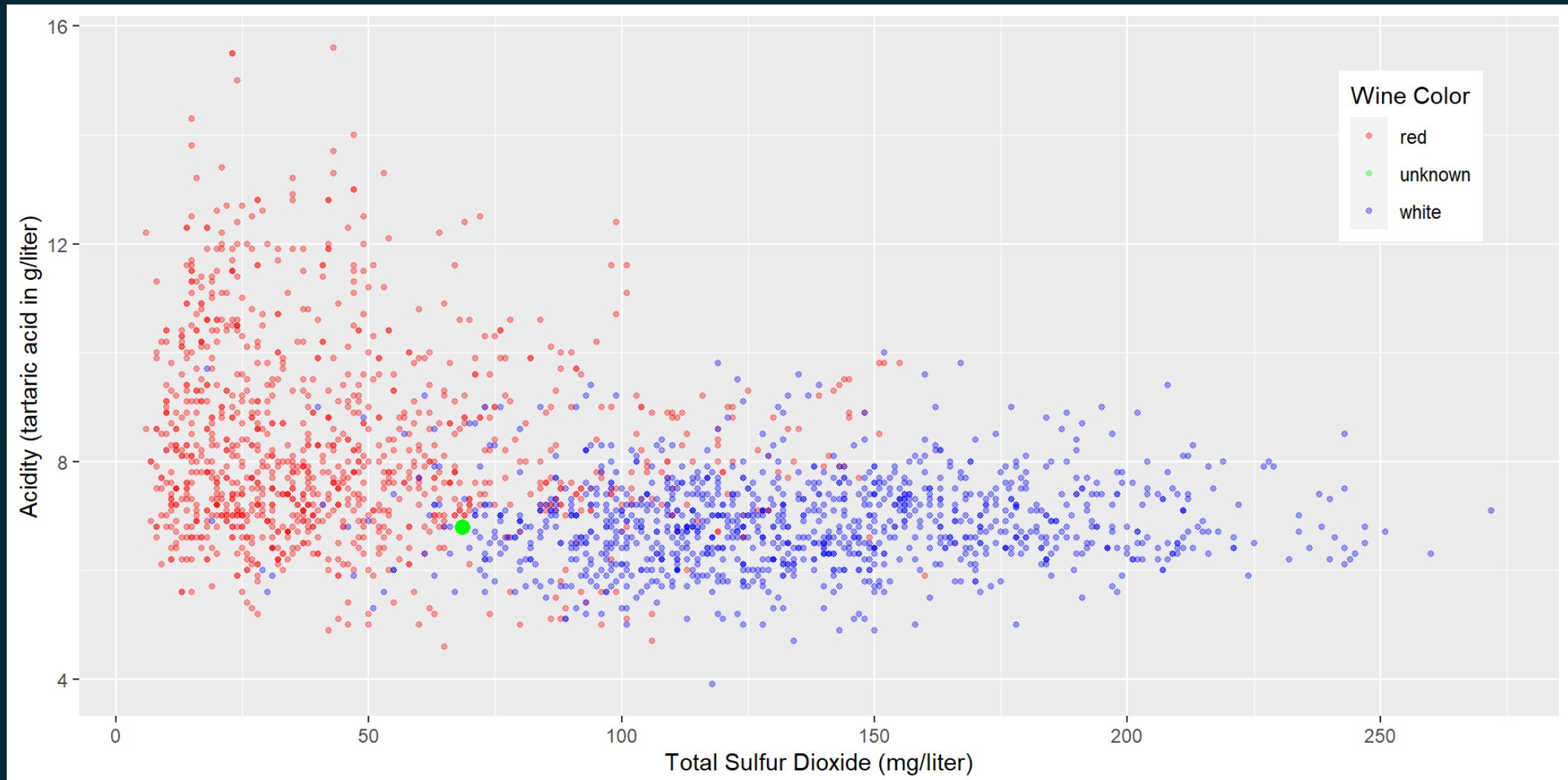
HOW TO CALCULATE EUCLIDEAN DISTANCE FOR N VARIABLES

Assume our observations have N predictor variables v_j with $j = 1 \dots N$. We compare the unknown point p to one of the points from the training data (e,g., point i):

$$Dist_i = \sqrt{\sum_{j=1}^N (v_{p,j} - v_{i,j})^2}$$

»

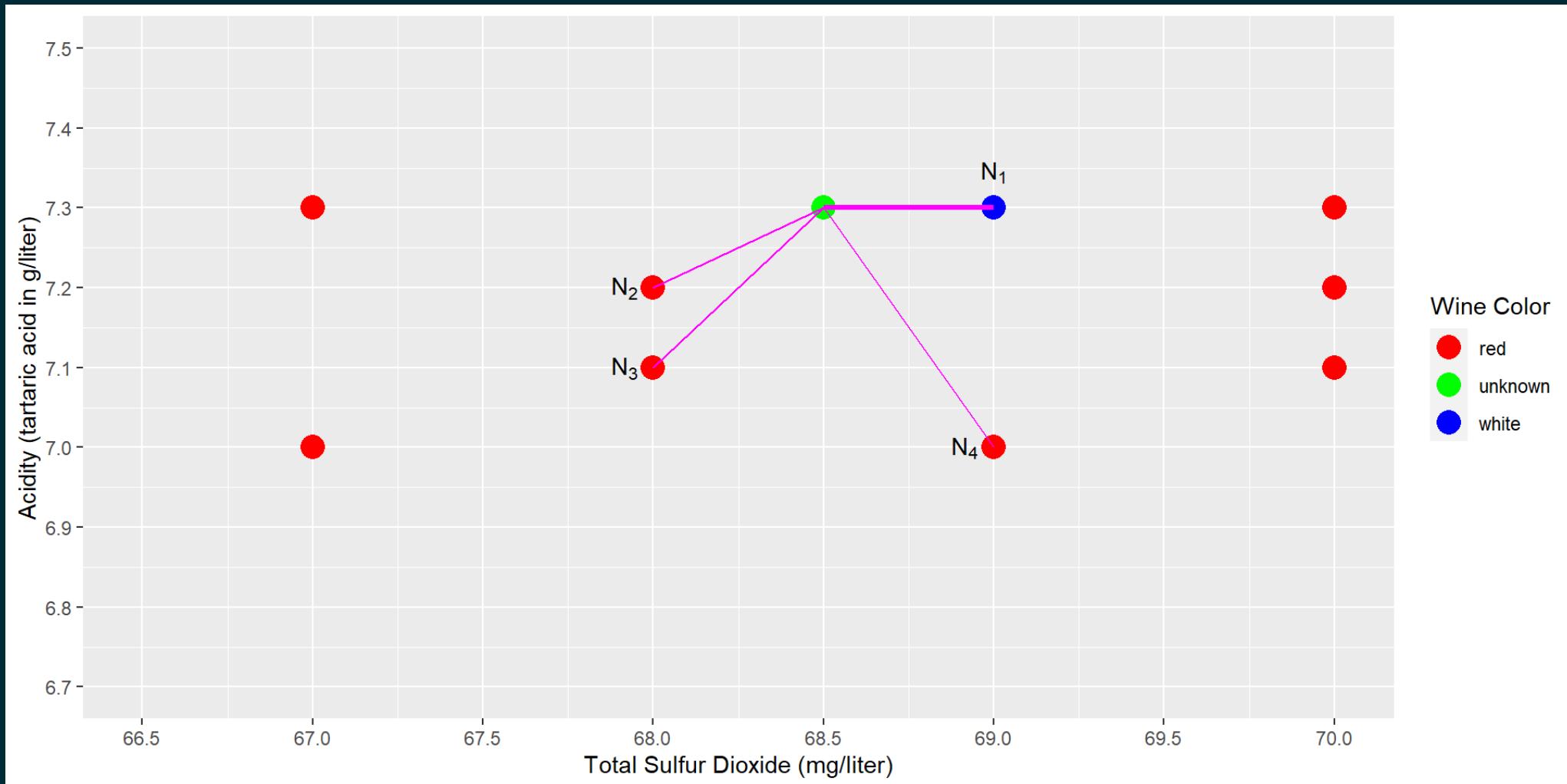
K NEAREST NEIGHBORS K=4 (FOR A DIFFERENT UNKNOWN WINE)



Acidity and Total Sulfur Dioxide Related to Wine Color

K NEAREST NEIGHBORS K=4 (FOR A DIFFERENT UNKNOWN WINE)

4 NEAREST NEIGHBORS VOTE ON “RED” VS. “WHITE”

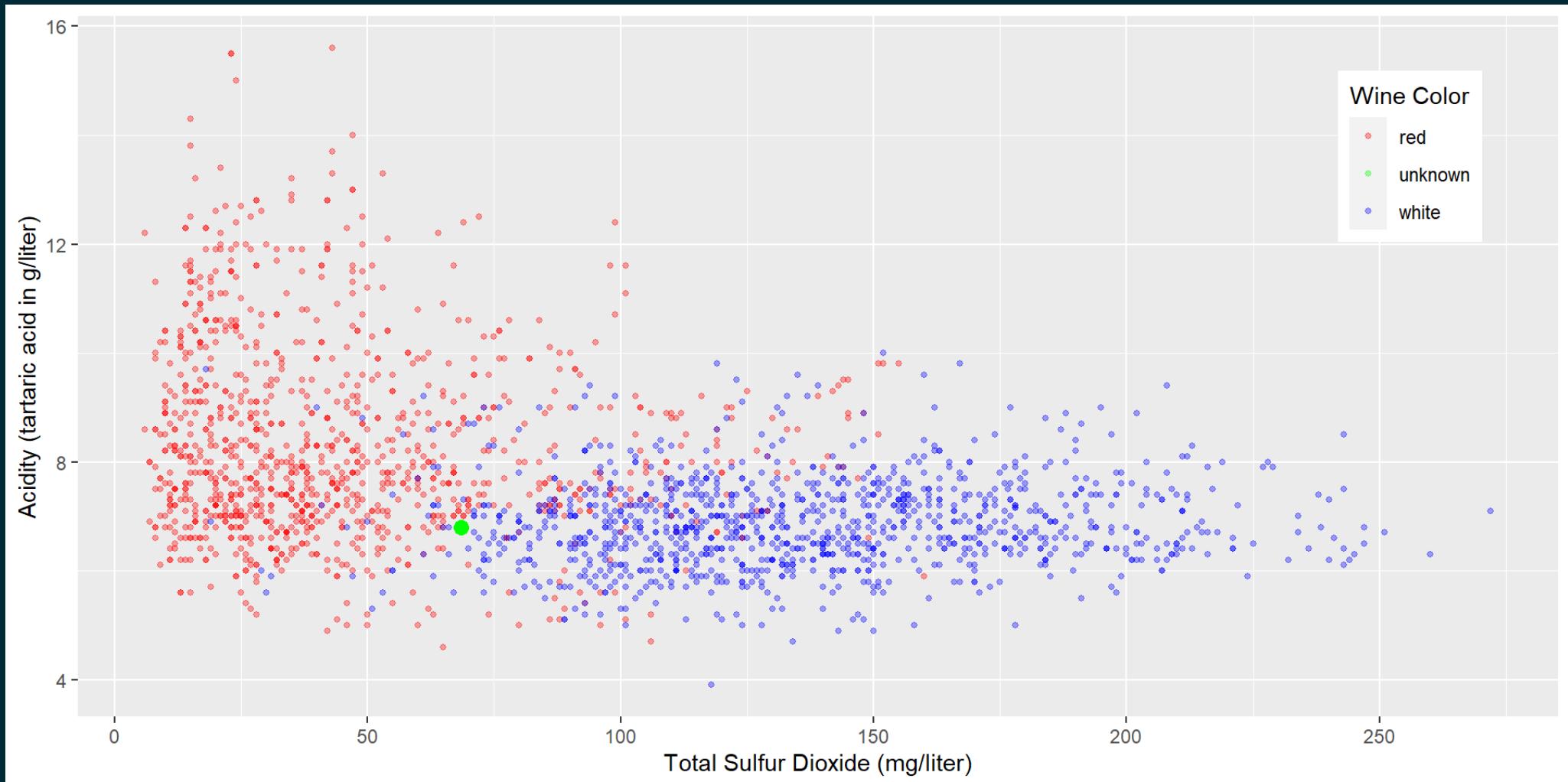


Predicting Wine Color with k-Nearest Neighbors (k=4)

<https://econ.lange-analytics.com/aibook/>

K NEAREST NEIGHBORS K=4 (FOR A DIFFERENT UNKNOWN WINE)

WATCH THE SCALE: G/LITER VS. MG/LITER. THAT DOES NOT LOOK RIGHT!



Acidity and Total Sulfur Dioxide Related to Wine Color »

A FEW COMMON SCALING OPTIONS

- **Same units**

Divide or multiply to get the same units. This is often not possible (e.g., Height and Weight). Or it is not feasible (e.g. Alcohol and StrawberryJuice content in spiked strawberry drink))

- **Rescaling**

Generates a variable y that is scaled to a range between 0 and 1 based on the original variable's value x , its minimum x_{min} and its maximum x_{max} :

$$y = \frac{x - x_{min}}{x_{max} - x_{min}}$$

- **Z-Score Normalization**

Z-score normalization uses the mean (\bar{x}) and the standard deviation (s) of a variable to scale the variable x to the variable z :

$$z = \frac{x - \bar{x}}{s}$$

»

TIME TO RUN K-NEAREST NEIGHBORS

LOADING DATA AND SELECTING VARIABLES

```
1 library(tidyverse); library(rio);library(janitor)
2 DataWine=import("https://lange-analytics.com/AIBook/Data/WineData.rds") %>%
3     clean_names("upper_camel") %>%
4     select(WineColor,Sulfur=TotalSulfurDioxide,Acidity) %>%
5     mutate(WineColor=as.factor(WineColor))
6 print(DataWine)

# A tibble: 3,198 × 3
  WineColor Sulfur Acidity
  <fct>     <dbl>   <dbl>
1 red        37     10.8
2 white      213     6.4
3 white      139     9.4
4 white      90      8.2
5 white      183     6.4
6 red        38      6.7
7 red        19      11.8
8 white      220     6.7
9 red        12      7.5
10 red       25      7.1
# ... with 3,188 more rows
```

»

TIME TO RUN K-NEAREST NEIGHBORS

Generate Training and Testing Data (Splitting):

```
1 library(tidymodels);  
2 set.seed(876)  
3 Split7030=initial_split(DataWine,prop=0.7,strata = WineColor)  
4  
5 DataTrain=training(Split7030)  
6 DataTest=testing(Split7030)  
7 print(DataTrain)
```

```
# A tibble: 2,238 × 3  
  WineColor Sulfur Acidity  
  <fct>     <dbl>   <dbl>  
1 red         37     10.8  
2 red         38      6.7  
3 red         12      7.5  
4 red         25      7.1  
5 red        114      8  
6 red         66      7.6  
7 red         49      6.8  
8 red        110      7  
9 red         44      6.5  
10 red        10     10.4  
# ... with 2,228 more rows
```

```
1 print(DataTest)
```


TIME TO RUN K-NEAREST NEIGHBORS

[CLICK HERE TO FIND A REFERENCE LIST FOR VARIOUS Step_ COMMANDS](#)

Recipe: Prepare Data for Analysis:

```
1 RecipeWine=recipe(WineColor~Acidity+Sulfur, data = DataTrain) %>%
2   step_naomit() %>%
3   step_normalize(all_predictors())
```

Or:

```
1 RecipeWine=recipe(WineColor~., data = DataTrain) %>%
2   step_naomit() %>%
3   step_normalize(all_predictors())
1 print(RecipeWine)
```

Recipe

Inputs:

role	#variables
outcome	1
predictor	2

Operations:

TIME TO RUN K-NEAREST NEIGHBORS

[CLICK HERE TO FIND A REFERENCE LIST FOR VARIOUS Step_ COMMANDS](#)

Creating a Model Design:

```
1 ModelDesignKNN<-nearest_neighbor(neighbors = 4, weight_func = "rectangular") %>%
  2           set_engine("kknn") %>%
  3           set_mode("classification")
4 print(ModelDesignKNN)
```

K-Nearest Neighbor Model Specification (classification)

Main Arguments:

```
neighbors = 4
weight_func = rectangular
```

Computational engine: kknn

TIME TO RUN K-NEAREST NEIGHBORS

Putting it all together in a **fitted workflow**:

```
1 WFMModelWine=workflow() %>%
  2       add_recipe(RecipeWine) %>%
  3       add_model(ModelDesignKNN) %>%
  4       fit(DataTrain)
  5 print(WFMModelWine)
```

== Workflow [trained] ==

Preprocessor: Recipe

Model: nearest_neighbor()

— Preprocessor —

2 Recipe Steps

- step_naomit()
- step_normalize()

— Model —

Call:

```
kknn:::train.kknn(formula = ..y ~ ., data = data, ks = min_rows(4, data, 5), kernel =
~"rectangular")
```

Type of response variable: nominal

Minimal misclassification: 0.1000894

TIME TO RUN K-NEAREST NEIGHBORS

How to use the **fitted** workflow to predict the wine color for the wines in the testing dataset:

1. Start with observation $i = 1$ from **DataTest** (the first observation).
2. Take observation i from **DataTest** and use **Acidity** and **Sulfur** to calculate the Euclidean distance to **each** of the observations of **DataTrain**.
3. Isolate the 4 observations with the smallest Euclidean distance and use the majority of their wine color as a prediction for observation i from **DataTest** (in case of a par, decide randomly).
4. Increase i by one (i.e., take the next observation from **DataTest**) and go to step 2 (until **all** **DataTest** observations are processed).

TIME TO RUN K-NEAREST NEIGHBORS

Predicting with the fitted workflow using `predict()` (not exactly helpful!):

```
1 predict(WFModelWine, DataTest)

# A tibble: 960 × 1
  .pred_class
  <fct>
  1 white
  2 red
  3 white
  4 white
  5 white
  6 red
  7 white
  8 white
  9 red
 10 red
# ... with 950 more rows
```

TIME TO RUN K-NEAREST NEIGHBORS

Predicting with the fitted workflow using `augment()` which *augments* `DataTest` with the predictions:

```
1 DataPredWithTestData=augment(WFModelWine, DataTest)
2 head(DataPredWithTestData)

# A tibble: 6 × 6
  WineColor Sulfur Acidity .pred_class .pred_red .pred_white
  <fct>      <dbl>   <dbl> <fct>        <dbl>        <dbl>
1 white        90     8.2  white        0.25       0.75
2 red          19    11.8  red          1          0
3 white       220     6.7  white        0          1
4 red          131     7.8  white        0.25       0.75
5 white       161      7   white        0          1
6 red          41     9.9  red          1          0
```

HAVING A DATA FRAME WITH **truth** AND **estimate** WE CAN CALCULATE PERFORMANCE METRICS

Confusion Matrix:

```
1 ConfMatrixWine=conf_mat(DataPredWithTestData, truth = WineColor, estimate = .pred_class
2 print(ConfMatrixWine)
```

		Truth
Prediction	red	white
	red	436
white	44	434

READING THE CONFUSION MATRIX

		Truth	
Prediction	Red Wine	White Wine	
Red Wine	TP: 436	FP: 46	
White Wine	FN: 44	TN: 434	

- The **positive class** (wine is “red”) is in the **first column**. 436 of the positives are classified correctly (TR: true positives), and 44 positives are incorrectly classified (FN: false negatives).
- The **negative class** (wine is “white”) is in the **second column**. 44 negatives are incorrectly classified (FP: false positives), and 434 negatives are classified correctly (TN: true negatives).

Accuracy: Number of wines on diagonal/number of all wines:

```
1 accuracy(DataPredWithTestData, truth = WineColor, estimate = .pred_class)  
# A tibble: 1 × 3  
  .metric  .estimator .estimate  
  <chr>    <chr>        <dbl>  
1 accuracy binary          0.906 https://econ.lange-analytics.com/aibook/
```


WARNING: BE CAREFUL WITH THE ACCURACY RATE

THE STORY OF DR. NEBULOUS'S GAMBLERS SYSTEM

Dr. Nebulous offers a **97% Machine Learning Gambling Prediction**. Here is how it works: Gamblers can buy a prediction for a fee of \$5. Dr. Nebulous will then run his famous machine learning model and send a closed envelope with the prediction. The gambler is supposed to open the envelope in the casino, right before placing a bet of \$100 on a number in roulette. The envelope contains a message that states either “You will win” or “You will lose”, which allows the gambler to act accordingly by either bet or not bet.

Dr. Nebulous claims that a “clinical trial” of 1000 volunteers, who opened the envelope after they had bet on a number in roulette, shows an accuracy of 97.3%.

How could Dr. Nebulous have such a precise model?

<https://econ.lange-analytics.com/aibook/>

WARNING: BE CAREFUL WITH THE ACCURACY RATE

THE STORY OF DR. NEBULOUS'S GAMBLERS SYSTEM

The trick is Dr. Nebulous's machine learning model uses the *naive prognosis*: It always predicts “You will lose”.

Here is the confusion matrix from the 1,000 volunteers trial:

		Truth	
		Win	Lose
Prediction	Win	0	0
	Lose	27	997

Roulette has 37 numbers to bet on. Chance to win is: $\frac{1}{37} = 0.027$.

Out of the 1000 volunteers, 27 are expected to win, and 973 are expected to lose.

$$Accuracy = \frac{0 + 973}{1000} = 0.973$$

WARNING: BE CAREFUL WITH THE ACCURACY RATE

THE STORY OF DR. NEBULOUS'S GAMBLERS SYSTEM

		Truth	
		Prediction	Win
Prediction	Win	0	0
	Lose	27	997

However, when we look at the correct positive and the correct negative rate separately, we see that Dr. Nebulous' accuracy rate (although correct) makes little sense.

- The correct negative rate (**specificity**) is 100%
- The correct positive rate (**sensitivity**) is zero (out of the 27 winners, all were falsely predicted as “You will lose”).

This example shows: When interpreting the confusion matrix, you must look at accuracy, sensitivity, and specificity simultaneously

TIME TO RUN K-NEAREST NEIGHBORS

accuracy(), sensitivity() and specificity() for the wine data:

```
1 accuracy(DataPredWithTestData, truth = WineColor, estimate = .pred_class)
```

```
# A tibble: 1 × 3
  .metric  .estimator .estimate
  <chr>    <chr>        <dbl>
1 accuracy binary      0.906
```

```
1 sensitivity(DataPredWithTestData, truth = WineColor, estimate = .pred_class)
```

```
# A tibble: 1 × 3
  .metric      .estimator .estimate
  <chr>        <chr>        <dbl>
1 sensitivity binary      0.908
```

```
1 specificity(DataPredWithTestData, truth = WineColor, estimate = .pred_class)
```

```
# A tibble: 1 × 3
  .metric      .estimator .estimate
  <chr>        <chr>        <dbl>
1 specificity binary      0.904
```

Can we improve by using all predictors.»

PROJECT: DESIGN A MACHINE LEARNING WORKFLOW FOR OPTICAL CHARACTER RECOGNITION »

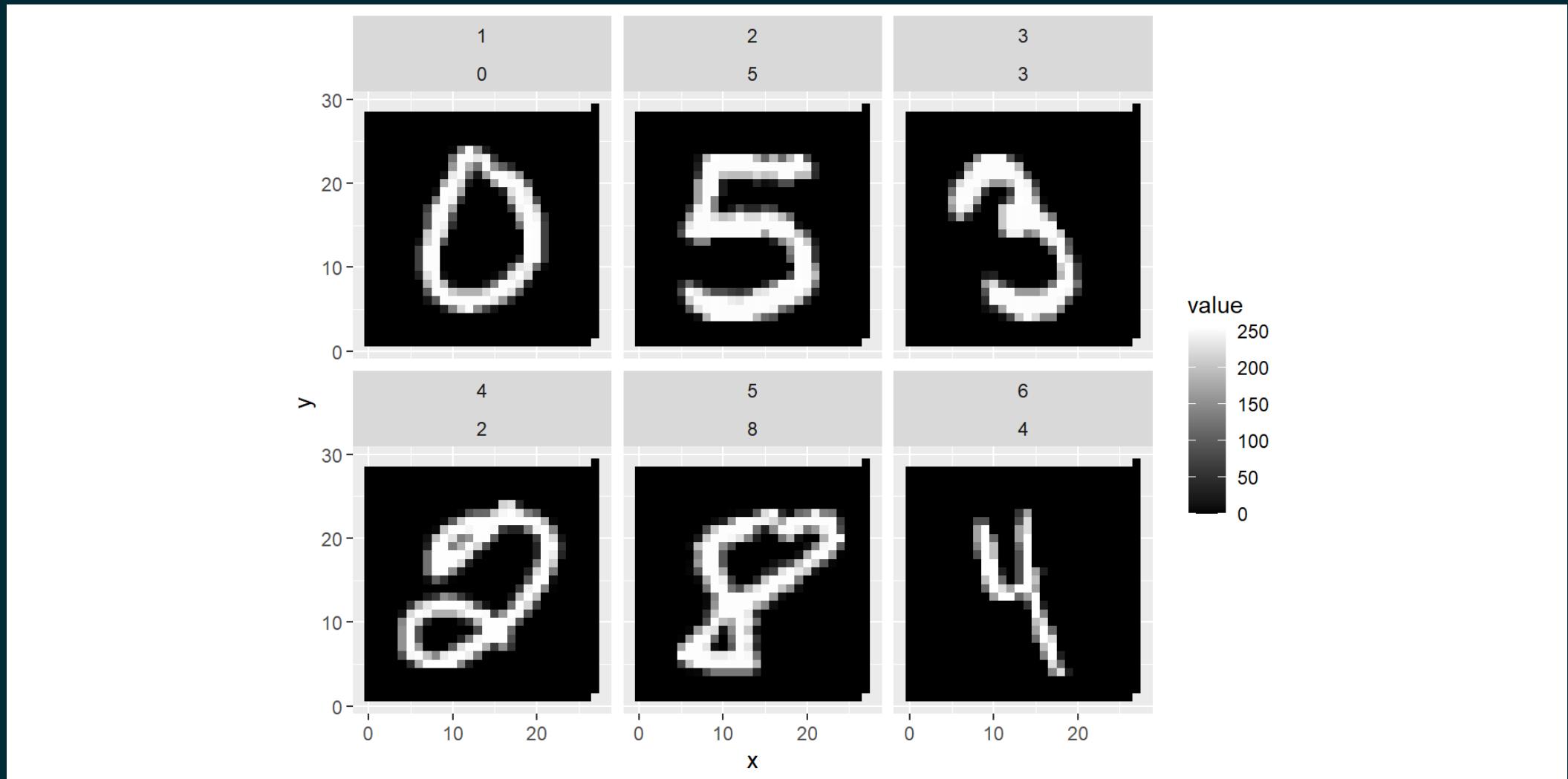
MNIST DATA SET

You will develop a machine learning model based on k-Nearest Neighbors to recognize handwritten digits from images.

You will use the MNIST dataset, a standard dataset for image recognition in machine learning (60,000 images for training and 10,000 images for testing). Developed by LeCun, Cortes, and Burges (2010) based on two datasets from handwritten digits obtained from Census workers and high school students.

We will use only the first 500 images of the original MNIST dataset to speed up the *k-Nearest Neighbors* model's training time.

VISUALIZATION OF THE FIRST SIX IMAGES FROM THE MNIST DATA SET



HOW A IMAGE IS STORED IN THE MNIST DATASET

Image of a Handwritten Nine

The image has 28 rows and 28 columns. Each of the 784 cells (pixels) holds a value between 0 (black) and 255 (white)

HOW A IMAGE IS STORED IN THE MNIST DATASET

Image of a Handwritten Nine

- Pixel values for a single image are not stored in a table. Otherwise we would end-up with a table containing tables.
- Pixel values are stored as one row for each image.
- Concatenating the 28 rows of an image into one row with $28*28=784$ cells (pixels)

THREE ROWS FROM THE DATA FRAME OF THE MNIST DATASET

```
1 print(Mnist4PlotAndTable[1:3,1:784])
```

	Label	Pix1	Pix2	Pix3	Pix4	Pix5	Pix6	Pix7	Pix8	Pix9	Pix10	Pix11	Pix12	Pix13
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	5	0	0	0	0	0	0	0	0	0	0	0	0	0
3	3	0	0	0	0	0	0	0	0	0	0	0	0	0
	Pix14	Pix15	Pix16	Pix17	Pix18	Pix19	Pix20	Pix21	Pix22	Pix23	Pix24	Pix25	Pix26	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Pix27	Pix28	Pix29	Pix30	Pix31	Pix32	Pix33	Pix34	Pix35	Pix36	Pix37	Pix38	Pix39	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Pix40	Pix41	Pix42	Pix43	Pix44	Pix45	Pix46	Pix47	Pix48	Pix49	Pix50	Pix51	Pix52	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Pix53	Pix54	Pix55	Pix56	Pix57	Pix58	Pix59	Pix60	Pix61	Pix62	Pix63	Pix64	Pix65	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Pix66	Pix67	Pix68	Pix69	Pix70	Pix71	Pix72	Pix73	Pix74	Pix75	Pix76	Pix77	Pix78	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Pix79	Pix80	Pix81	Pix82	Pix83	Pix84	Pix85	Pix86	Pix87	Pix88	Pix89	Pix90	Pix91	

GO TO PROJECT IN BOOK

BUILD YOUR OWN OCR SYSTEM.»